
ADVANCED INFO IN LUCASCHESS 8.0ADVANCED INFO IN LUCASCHESS 8.0
LucasChess 8.0 is trying, likely for the very first time in the history of the
chess softwares, to implement a numerical method to show and tell its
users some advanced abstract and concrete informations about the
position.
This is a very hard target: it is both an intellectual challenge and it is also
very useful for the users, because they will understand more about the
game than ever before.
Surely in the process of this development, we will change many times
the way we "calculate" those information we have spoken about.
In order to achieve that LucasChess needs to know, after every and
each move, a certain number of things, both by asking them to the
running engine and by calculating itself.

Here is a list of original variables (with a sort of evocative names):
xplm: number of half moves (plies) already played (range: from 1 to
infinite, naturally an integer).
xpie: number of pieces still alive in the board (range: from 2 to 32, an
integer).
xpiec: number of pieces belonging to the side to move still alive in the
board (range: from 1 to 16, an integer).
xmat: a sum of all the material stile alive in the board (range: from 6 to
100 or more; it is a fractional number where each king contributes with 3
points, each queen with 9.9, each rook with 5.5, each bishop with 3.5,
each knight with 3.1 and each pawn with 1.0).
xpow: a sum of all the material belonging to the side to move still alive
in the board (range: from 3 to 50 or more, a fractional number).
xmov: number of legal moves that is possible to play in a specific
position, regardless of their precision and efficiency (range: from 1 to 50
or more, an integer).
xgmo: good moves available, within 100 centipawns from the best with
a different weighted contribution, that is greater for the best moves and
lesser for the worst ones (range: typically from 1 to 10 or even more, a
fractionl number).
xeval: value that the engine has calculated to evaluate the position
(range: a fractional number that depends by the engine; each engine
has its own evaluation and therefore that leads to different values
according to the running engine).

Some other variables are derived, meaning that they are just a proper
combination of the originl ones (they all are fractional numbers,
expressed as a percentage):

xcompl: the value that shows how complex is a position (range:
typically from 0 to 80 or 90, in all our simulations it very hardly overtook
100).
xmlr: a value that tells how likely will occurr the victory of the winning
side (range: it varies from 0 to +100).
xemo: a value to show how efficient is the mobility of a player (range:
from 0 to 100).
xnar: a value that shows how narrow and/or crowded is a position
(range: from 0 to 200, but very often it stays below 100).
xact: a value that shows how active are the pieces of the side to
move(range: from 0 to 200, but very often i stays below 100).
xext: a value that shows how great is the tendency of a player to
exchange pieces, or in other words, his/her tendency to simplify (range:
from slightly negative values to 100 or even more).
xgst: a value that tells which stage of the game we are in (there are five
possibilities: opening, transition to middlegame, middlegame, transition
to endgame, endgame).

COMPLEXITYCOMPLEXITY
There is no unanimously accepted idea, currently, about the way to
show how complex is a chess position, and likely will never exist a safe
way to get it.
In the latest fritz gui there is a tachimeter that shows how that but we are
not sure that it works the way we have imagined (naturally this doesnt
mean that we are right and chessbase is wrong).
We should also consider the fact that what is complex for an engine (for
example to follow a long plan) might not be for a human and naturally it
is true the opposite as well (for example a checkmate in 7).
We have decided to follow a human-oriented path.
For complexity we mean a value that tells the user how difficult is to find,
in a certain position, the best move.

Here is a very good approximation of our idea:
 xgmo * xmov * xpie xmat
xcompl= ---------------------------- * -------------
 200 2 * xpow

Main concepts involved in the building of the algorythm:
1)xpie has been put in the numerator because we assume that in a
certain position, the complexity must be higher when the number of
pieces is higher.
Even if a piece cannot move yet in a certain imaginary position, it has
the "potential" to free his path or instead to be sadly captured; the more
pieces the user has to consider in his thoughts, the more complex the
position must somehow be.
2)xmov has been put in the numerator because we assume that in a
certain position, the complexity must be higher when the number of legal
moves is higher.
Strong players have a developped "sixth sense" that helps them to
discard unuseful moves very quickly (although sometimes these
apparently stupid moves hide amazing combinations), but neverthless it
appears very logical to assess that the more legal moves a position
contains the more difficult is the choice of the best one.
3)xgmo has been put in the numerator because we assume that in a
certain position, the complexity must be higher when the number of
good moves is higher.
And not seldom the choice of a move among three or four, apparently
not so different one another, represents the boundary between a win
and a draw, and even sometimes a loss!
We might say that gmo's aim is to simulate a kind of more refined "sixth

sense": only acceptable moves (within 100 centipawns from the
supposed best one) give contribution to this variable.
4)xeval is put in the denominator because obviously a very good
position (therefore an high xeval) is easy to play and many moves can
help to win; then an high xeval must logically be equivalent to a little
complexity degree.
5)in the main denominator we have put a constant k=200, in order to get
results (for xcompl) that somehow will always vary from 0 to 100 (or just
little more, but very rarely).
6)the factor (xmat/2xpow) is to be considered and called as material
balance factor: for example, values higher than 1 show that the side to
move suffers of a material deficit; it may be agreeable that when a
player is materially down his play becomes more difficult.

About users, in our opinion, a value of complexity that varies from zero
or almost zero to around 100 is very easy to understand; though it has
no mathematical meaning at all, it comes natural associating such
values with the concept of percantage.
And actually the formula has been designed to achieve that.
LucasChess shows (in the abstract kibitzer) the value itself as a
percentage and aside the value a text string that is related to the value:
0 ≤ xcompl <5 very low
5 ≤ xcompl <15 low
15 ≤ xcompl < 35 moderate
35 ≤ xcompl < 55 high
55 ≤ xcompl < 85 very high
85 ≤ xcompl <+infinite extreme

WIWIN PROBABILITYN PROBABILITY
Another useful information given by LucasChess is the win probability
(of the better side) in a certain position.
This is expecially useful in order to tell the user how good is his/her
technique because if this value keeps on increasing during the game
after the user has got a good position, it means that the user is beating
the opponent engine displaying a very consistent and precise play.
It also can teach beginners about some endgames, if they are won or
draw with absolute certainty (as long as it is used a modern engine with
long thinking time) or about some positions that are impossible to win.

Our idea:
 xeval
xmlr= | 100 * tanh(-------------) |
 2 * xmat

All concepts involved in the building of the algorythm are:
1)xeval has been put in the numerator because we assume that in a
certain position the higher is eval the greater probabilities to win belong
to the winning side.
It's a good approximation that an eval=+600 must mean that position is
surely always won (mind that top engines recognize draw endgames like
NNK vs K with no need to go very deep).
For eval=+600 and very low material amount we have mlr≈100 (that
means that LC will show "100.0% win percentage for white").
For eval=+300 and just few pieces exchanged we might have mlr≈95; it
means that LucasChess recognizes a very high probability of a victory
but the worst side still has a lot of pieces to create a counterplay.
Naturally if eval=0 it might be highly speculative to assign a winning
percentage to any of the two players; it is a rare situation in opening and
middlegame, but enough common in endgames where indeed there are
many positions impossible to win (that means that LucasChess will
show "0% win percentage").
2)(2xmat) is a correcting factor: it takes into account the remaining
material; it is an acceptable assumption to think that the lower is the
material on the board, the more likely is the victory of the winning side
because the other player has (likely) less firepower to generate a
counterplay.
3)tanh is the trigonometric function hyperbolic tangent; naturally x is not
an angle but we have discovered after hours of manual tests that it
works wonderfully.

We have even run hundreds of test-games (where the same engine
played both white and black) starting from fixed position, with known win
probability.
The actual results and the forecasts given by our algorythm are
extremely similar, much more than we ever expected.

LucasChess will show this mlr as percentage to win for the winning
side, and aside an adjective related; exactly the same as in complexity.

EFFICIENT MOBILITYEFFICIENT MOBILITY
It is possible that the user wishes to know if his/her position offers many
acceptable resources or not: in other words LucasChess wants to show
how efficient is the mobility at disposal of a player.
Somehow it is possible to say that efficient mobility measures how
forcing is the nature of the position, from the point of view of the side
with the right to move.
This is an information not to undervalue at all.
Moreover, there is no safe correlation between complexity and efficient
mobility, because the two data really measure two very different things:
a player might have a great mobility but his/her position is not
necessarily either simple or complex.

A simple and yet effective formula can be:
 xgmo-1
xemo= 100 * -----------
 xmov

Main concepts involved in the building of the algorythm:
1)xgmo has been put in the numerator because it is logical that the
more good moves there are in a certain position, the more efficient is
supposed to be the mobility of a player.
2)xmov has been put in the denominator because it is like that that we
get a ratio (read... percentage) of good moves.
3)xgmo-1 in the numerator is put (instead of a simple xgmo) in order to
exalt the importance of good and not forced (read... efficient) mobility:
for example when there is only one legal move to make, or also when
there is only one saving resource in the position.

While complexity and win probability have been purposely designed to
appear as a percentage, efficient mobility is instead very close to be a
pure percentage by its nature.
With these facts, xemo shows the percentage of good moves compared
to the number of moves not immediately losing; notice that "good
moves" are not necessarily moves that leads to advantage, they are
simply the best resources of a player in that particular position.
Actually, efficient mobility can be used to spot a combination hidden in
the position: when a player must not face any immediate threat and
his/her position is rather active and dynamic, a very low value of xemo
is not a bad sign!
On the contrary it means that likely there is move that keeps or even
increase the advantage.

The same applies when a player is in troubles: a very low xemo just tell
that he/she has likely only one saving resource.

LucasChess will show efficient mobility as a percentage of efficiency of
the whole mobility, and aside an adjective related.

NARROWNESSNARROWNESS
Another point of view about any position that LucasChess offers to its
users is the narrowness.
This parameter tells, in our hopes, how crowded and/or narrow is a
position, in brief its nature: this can be particularly useful in order to
show how the properties of the pieces can vary according to this feature
of the position.

Our idea is:
 xpie xpie xmat
xnar= 10 * ------------------------ * ------------- * --------------
 xgmo0.5 * xmov0.5 2 * xpiec 2 * xpow

Main concepts involved in the building of the algorythm:
1)xpie has been put in the numerator because the number of pieces is
the main factor that makes a position wide or narrow; xpie is a favouring
factor of narrowness.
2)xgmo has been put in the denominator because an high number of
good moves logically is related to a certain mobility; xgmo must be a
contrasting factor of narrowness.
3)xmov has been put in the denominator because an high number of
legal moves, good or bad, show us somehow how many pieces can
actually move; again a contrasting factor of narrowness.
Somebody might argue that it was better to use only xmov or only
xgmo: we disagree at all because if a player has a restricted and narrow
position he/she cant seriously think to give a way a pawn or a whole
piece in order to free his/her play (unless the engine doesnt show that
the he/she gets big compensation).
Therefore not all moves that somehow open lines are acceptable to
decrease narrowness, and that pushes for the sole use of xgmo.
But neverthless, when a player has 30 legal moves at his/her disposal, it
is somehow "wrong" to assert that he/she has a very narrow position.
We believe that a denominator (xgmo*xmov)0.5 is a good compromise.
3)the factor (xpie/2xpiec) is to be considered and called as a numerical
balance factor: it is a ratio involving the total number of pieces
(numerator) and just the pieces of the side to move (denominator).
All values beyond 1 mean that the waiting side has more pieces than the
side to move: this is a situation that somehow increases narrowness.
4)the factor (xmat/2xpow) basically exploits the same concepts than
(xpie/2xpiec), with the difference that here we compare the material.
It is logical in our opinion that a material advantage must somehow
imply a lower narrowness, while a material disadvantage must lead to

an higher narrowness.

Narrowness and efficient mobility are actually enough close concepts
but not identical: by the former LucasChess shows how efficiently the
pieces occupy the board, by the latter LucasChess shows the
percentage of moves that are not forced.
It is possibly to assert that narrowness is a semi-statical feature of the
position while efficient mobility is a dynamic one.

LucasChess will show narrowness as a percentage and aside an
adjective related.

PIECES ACTIVITYPIECES ACTIVITY
Very often you may read in chess books or articles that you must
maximize the activity of your pieces, that you must increase the activity
of your worst piece if there is nothing else forcing and so on...
But what is exacly the activity of a piece?
In our opinion, and this is the way that LucasChess deals with the
matter, we define pieces activity as the ability of all pieces belonging to a
player to generate good moves and threats.

A good approximation of our idea for pieces activity:
 xgmo0.5 * xmov0.5 2 * xpiec 2 * xpow
xact= 10 * ----------------------- * ------------- * -------------
 xpiec xpie xmat

To build the algorythm we have done these assumptions:
1)(xgmo*xmov)0.5 has been put in the numerator because a larger
number of good moves must be directly proportional to the whole activity
of a player, but also xmov may contribute positively because a large
number of legal moves must somehow be considered an helping factor.
2)xpiec belongs to the denominator because we have indeed defined
pieces activity as the whole activity of a player related to the number of
his/her pieces.
3)both factors (2xpiec/xpie) and (2xpow/xmat), though in inverted
shape compared to narrowness algorythm, have the same meaning we
have discussed before: they measure how much the material balance
and numerical balance may affect the pieces activity.
Naturally we have inverted their shape here, because pieces activity
concerns what is almost exactly the opposite than narrowness: the side
to move often needs to have more pieces than his/her opponent and
also more material to be more active.
4)pieces activity may somehow seem identical to efficient mobility, and
indeed it is rather similar but absolutely not coincident; the difference is
that while efficient mobility measures what is the ratio of good moves
compared to all moves available to the player (therefore telling us how
forced is the play in the position), pieces activity instead measures how
many good moves per piece we have at our disposal.
We have to say also that pieces activity and narrowness are not exactly
the opposite: the former is a measure of the dynamism of our pieces,
while the latter is a semi-static feature of the position.

LucasChess will show pieces activity of the side to move as a
percentage and an adjective related.

SIMPLIFICATIONSIMPLIFICATION
LucasChess offers its users the possibility to take note of the different
tendency of white and black to simplification, that normally involves
captures and promotions.
This information might not be as useful as the previous ones, but
neverthless give us a an alternative point of view about a game, and it is
also a way to characterize the playstyle of a player.

Our idea of a proper algorythm is:
 16 45
xext= 100 * (-------- * --------)0.5 - xplm -100
 xpiec xpow

To build the algorythm we have considered these issues:
1)the factor (16/xpiec)0.5 measures how fast pieces (belonging to the
side to move) disappear from the board; it is actually an extinction factor.
2)the factor (45.1/xpow)0.5 measures how fast material (belonging to the
side to move) disappears from the board; it is a complementary
extinction factor.
Notice, however, that by using the second factor we have added a
refined point of view about this issue: while the first factor doesnt
consider what type of piece is being exchanged, the second one does!
To exchange queens affects simplification much more than capturing
some pawns each other!
3)(-100-xplm) is a correcting element, to take into considerations that if
a position remains stable in terms of captures or promotions then it
means that the players are not trying to simplify matters, but instead the
contrary: indeed this is an increasing negative term in the algorythm.

As general rule, it can be said the a low simplification is typical of
attacking players who dont like to exchange too many pieces too soon.
The value of xext generally increases along the game, with higher rythm
after an exchange; but its value will decrease after a promotion: this is
optimal, because a promotion adds complications to the position.

LucasChess will show the simplification of the side to move as a
percentage and aside an adjective related.

GAME STAGEGAME STAGE
LucasChess is able to show which stage of the game we are in.
We have gone beyond the traditional classification in three stages
(opening, middlegame and endgame) and indeed the algorythm we
have developped is able to recognize two more stages: transition to
middlegame and transition to endgame.
It must be told, neverthless, that even among the best known
theoreticians there is no agreement at all about where/when/how a
stage ends and the next starts; not only as a general rule, but even
concerning a specific opening.
Therefore this information should be handled carefully; it is very possible
that, in the future, we will melt this algorythm with the standard opening
book given and with eventual endgame bases.

We think neverthless that this is a very good approximation:
 xpie * xmat
gst= -------------------------
 3 * (xplm + 0.001)

Main concepts involved in the building of the algorythm:
1)(xpie*xmat) is a mixed material factor: it takes into consideration both
the number of pieces and the amount of material remaining; basically it
is correct to assert that all stages in a chess games are defined by the
number of pieces (xpie) and its type (xmat).
2)(xplm+0.001) gives us the opportunity to parametrize material in
relation with the number of moves played.
Again we use a constant k=0.001 in order to avoid the denominator to
be zero (as it is before the game actually starts).
Though the algorythm seems quite simplistic (it is, actually), it works
surprisingly well.
A further development might be adding a correcting factor that takes into
account big material imbalances (for example mating attacks in the early
opening).

LucasChess will shows which stage of the game we are in, according to
the following table:
0 ≤ gst <5 endgame
5 ≤ gst <10 transition to endgame
10 ≤ gst < 40 middlegame
40 ≤ gst < 50 transition to middlegame
50 ≤ gst ≈ 962000 opening

